Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 295(4): F1177-90, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18715941

RESUMO

Polyuria, hypernatremia, and hypovolemia are the major clinical signs of inherited nephrogenic diabetes insipidus (NDI). Hypernatremia is commonly considered a secondary sign caused by the net loss of water due to insufficient insertion of aquaporin-2 water channels into the apical membrane of the collecting duct cells. In the present study, we employed transcriptome-wide expression analysis to study gene expression in V2 vasopressin receptor (Avpr2)-deficient mice, an animal model for X-linked NDI. Gene expression changes in NDI mice indicate increased proximal tubular sodium reabsorption. Expression of several key genes including Na+-K+-ATPase and carbonic anhydrases was increased at the mRNA levels and accompanied by enhanced enzyme activities. In addition, altered expression was also observed for components of the eicosanoid and thyroid hormone pathways, including cyclooxygenases and deiodinases, in both kidney and hypothalamus. These effects are likely to contribute to the clinical NDI phenotype. Finally, our data highlight the involvement of the renin-angiotensin-aldosterone system in NDI pathophysiology and provide clues to explain the effectiveness of diuretics and indomethacin in the treatment of NDI.


Assuntos
Diabetes Insípido Nefrogênico/fisiopatologia , Hipotálamo/fisiologia , Túbulos Renais Proximais/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Vasopressinas/genética , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Diabetes Insípido Nefrogênico/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica/fisiologia , Perfilação da Expressão Gênica , Homeostase/fisiologia , Hipernatremia/metabolismo , Hipernatremia/fisiopatologia , Camundongos , Receptores de Vasopressinas/deficiência , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
J Struct Biol ; 159(3): 498-506, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17643314

RESUMO

Phosphofructokinase (Pfk1; EC 2.7.1.11) is the third enzyme of the glycolytic pathway catalyzing the formation of fructose-1,6-bisphosphate from fructose-6-phosphate (F6P) and ATP. Schizosaccharomyces pombe Pfk1 is a homo-octameric enzyme of 800 kDa molecular weight, distinct from its yeast counterparts which are mostly hetero-octameric enzymes composed of two different subunits. Having an "open" conformation and a tendency to aggregate into higher oligomeric structures, the S. pombe enzyme shows similarities to the mammalian muscle Pfk1. It has been proposed that due to the distinct N-terminal region of the S. pombe subunit, the oligomeric organization of subunits in this enzyme is different from other yeast phosphofructokinases. Electron microscopy studies were carried out to reveal the quaternary structure of the homo-octameric Pfk1 from S. pombe in the F6P-bound and in the ATP-bound state. Random conical tilt data sets have been collected from deep stain preparations of the enzyme in both states. The 0 degrees tilt images have been separated into different classes and a 3D reconstruction has been calculated for each class from the high tilt images. Our results confirm the presence of a variety of views of the particle, most of which can be interpreted as views of the molecule rotating around its long axis. Despite the biochemical differences, the structure of phosphofructokinase from S. pombe in the presence of either F6P or ATP is similar to the hetero-octameric structure of phosphofructokinase from Saccharomyces cerevisiae. The molecule can be described as composed of two subdomains, connected by two well-defined densities. We have been able to establish a correlation between the kinetic behavior and the structural conformation of Pfk1.


Assuntos
Fosfofrutoquinase-1/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Trifosfato de Adenosina/química , Frutosefosfatos/química , Microscopia Eletrônica , Estrutura Quaternária de Proteína
3.
J Struct Biol ; 159(1): 135-43, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17493831

RESUMO

Phosphofructokinase (Pfk1, EC 2.7.1.11) plays a key regulatory role in the glycolytic pathway. The combination of X-ray crystallographic and biochemical data has provided an understanding of the different conformational changes that occur between the active and inhibited states of the bacterial enzyme, and of the role of the two bacterial effectors. Eukaryotic phosphofructokinases exhibit a far more sophisticated regulatory mechanism, they are more complex structures regulated by a large number of effectors (around 20). Saccharomyces cerevisiae Pfk1 is an 835 kDa hetero-octamer which shows cooperative binding for fructose-6-phosphate (F6P) and non-cooperative binding for ATP. The 3D structure of the F6P-bound state was obtained by cryo-electron microscopy to 1.1 nm resolution. This electron microscopy structure, in combination with molecular replacement using the bacterial enzyme has helped provide initial phases to solve the X-ray structure of the F6P-bound state 12S yeast truncated-tetramer. Biochemical and small-angle X-ray scattering (SAXS) studies had indicated that Pfk1 underwent a large conformational change upon Mg-ATP binding. We have calculated a reconstruction using reference-based 3D projection alignment methods from 0 degrees images acquired from frozen-hydrated preparations of the enzyme in the presence of Mg-ATP. The ATP-bound structure is more extended or open, and the calculated radius of gyration of 7.33 nm (7.0 nm for F6P) is in good agreement with the SAXS data. There is a substantial decrease in the rotational angle between the top and bottom tetramers. Interestingly, all these changes have arisen from a reorientation of the alpha- and beta-subunits in the dimers. The interface region between the alpha- and beta-subunits is now approximately half the size of the one in the F6P-bound structure. This is the first time that the 3D structure of a eukaryotic Pfk1 has been visualized in its T-state (inhibited-state).


Assuntos
Trifosfato de Adenosina/química , Microscopia Crioeletrônica , Fosfofrutoquinase-1/química , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Imageamento Tridimensional , Fosfofrutoquinase-1/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína
4.
J Biol Chem ; 282(32): 23687-97, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17522059

RESUMO

Classically, 6-phosphofructokinases are homo- and hetero-oligomeric enzymes consisting of alpha subunits and alpha/beta subunits, respectively. Herein, we describe a new form of 6-phosphofructokinase (Pfk) present in several Pichia species, which is composed of three different types of subunit, alpha, beta, and gamma. The sequence of the gamma subunit shows no similarity to classic Pfk subunits or to other known protein sequences. In-depth structural and functional studies revealed that the gamma subunit is a constitutive component of Pfk from Pichia pastoris (PpPfk). Analyses of the purified PpPfk suggest a heterododecameric assembly from the three different subunits. Accordingly, it is the largest and most complex Pfk identified yet. Although, the gamma subunit is not required for enzymatic activity, the gamma subunit-deficient mutant displays a decreased growth on nutrient limitation and reduced cell flocculation when compared with the P. pastoris wild-type strain. Subsequent characterization of purified Pfks from wild-type and gamma subunit-deficient strains revealed that the allosteric regulation of the PpPfk by ATP, fructose 2,6-bisphosphate, and AMP is fine-tuned by the gamma subunit. Therefore, we suggest that the gamma subunit contributes to adaptation of P. pastoris to energy resources.


Assuntos
Fosfofrutoquinase-1/química , Fosfofrutoquinase-1/fisiologia , Pichia/enzimologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sistema Livre de Células , Clonagem Molecular , Citometria de Fluxo , Frutosedifosfatos/química , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
5.
J Struct Biol ; 143(2): 124-34, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12972349

RESUMO

Phosphofructokinase plays a key role in the regulation of the glycolytic pathway and is responsible for the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate. Although the structure of the bacterial enzyme is well understood, the knowledge is still quite limited for higher organisms given the larger size and complexity of the eukaryotic enzymes. We have studied phosphofructokinase from Saccharomyces cerevisiae in the presence of fructose 6-phosphate by cryoelectron microscopy and image analysis of single particles and obtained the structure at 10.8A resolution. This was achieved by optimizing the illumination conditions to obtain routinely 8-A data from hydrated samples in an electron microscope equipped with an LaB(6) and by improving the image alignment techniques. The analysis of the structure has evidenced that the homology of the subunits at the sequence level has transcended to the structural level. By fitting the X-ray structure of the bacterial tetramer into each dimer of the yeast octamer the putative binding sites for fructose 6-phosphate were revealed. The data presented here in combination with molecular replacement techniques have served to provide the initial phases to solve the X-ray structure of the yeast phosphofructokinase.


Assuntos
Fosfofrutoquinase-1/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Microscopia Crioeletrônica , Desenho de Equipamento , Frutosefosfatos/metabolismo , Imageamento Tridimensional , Fosfofrutoquinase-1/isolamento & purificação , Conformação Proteica , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Homologia Estrutural de Proteína
6.
Yeast ; 19(11): 933-47, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12125050

RESUMO

6-Phosphofructokinase from Pichia pastoris was purified for the first time to homogeneity applying seven steps, including pseudo-affinity dye-ligand chromatography on Procion Blue H-5R-Sepharose. The specific activity of the purified enzyme was about 80 U/mg. It behaves as a typically allosteric 6-phosphofructokinase exhibiting activation by AMP and fructose 2,6-bis(phosphate), inhibition by ATP and cooperativity to fructose 6-phosphate. However, in comparison with the enzymes from Saccharomyces cerevisiae and Kluyveromyces lactis, the activation ratio of 6-phosphofructokinase from Pichia pastoris by AMP is several times higher, the ATP inhibition is stronger and the apparent affinity to fructose 6-phosphate is significantly lower. Aqueous two-phase affinity partitioning with Cibacron Blue F3G-A did not reflect remarkable structural differences of the nucleotide binding sites of the Pfks from Pichia pastoris and Saccharomyces cerevisiae. The structural organisation of the active enzyme seems to be different in comparison with hetero-octameric 6-phosphofructokinases from other yeast species. The enzyme was found to be a hetero-oligomer with an molecular mass of 975 kDa (sedimentation equilibrium measurements) consisting of two distinct types of subunits in an equimolar ratio with molecular masses of 113 kDa and 98 kDa (SDS-PAGE), respectively, and a third non-covalently complexed protein component (34 kDa, SDS-PAGE). The latter seems to be necessary for the catalytic activity of the enzyme. Sequencing of the N-terminus (VTKDSIXRDLEXENXGXXFF) and of peptide fragments by applying MALDI-TOF PSD, m/z 1517.3 (DAMNVVNH) and m/z 2177.2 [AQNCNVC(L/I)SVHEAHTM] gave no relevant information about the identity of this protein.


Assuntos
Fosfofrutoquinase-1 , Pichia/enzimologia , Sequência de Aminoácidos , Meios de Cultura , Ativação Enzimática , Glucose/metabolismo , Cinética , Dados de Sequência Molecular , Peso Molecular , Fosfofrutoquinase-1/química , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/isolamento & purificação , Fosfofrutoquinase-1/metabolismo , Pichia/genética , Pichia/crescimento & desenvolvimento
7.
Yeast ; 19(11): 949-56, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12125051

RESUMO

Previously, studies on glucose-induced microautophagy in the methylotrophic yeast Pichia pastoris provided evidence that the glucose-induced selective autophagy-1-protein is the alpha-subunit of 6-phosphofructokinase (Pfk), a key enzyme in the glycolytic pathway. In our work, we could clearly demonstrate that two types of subunits of Pfk exist in P. pastoris. Investigating the yeast cell-free extract by Western blot analysis, two distinct signals of Pfk were obtained. In addition, we isolated a DNA sequence containing the complete ORF of PpPFK2 encoding the beta-subunit of Pfk from P. pastoris with a deduced molecular mass of 103.7 kDa. On the basis of these results, a hetero-oligomeric structure of Pfk in P. pastoris became obvious. Because the molecular and kinetic properties of a homo-oligomeric yeast Pfk appear to be more similar to those of mammalian Pfk, as described in the literature, our results are of interest for the growing number of studies on P. pastoris as a heterologous production system. Furthermore, the 3'- and 5'-non-coding regions of PpPFK2 were isolated and several putative binding sites for regulatory factors could be identified in the promoter region.


Assuntos
Fosfofrutoquinase-1/química , Fosfofrutoquinase-1/genética , Pichia/enzimologia , Pichia/genética , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Clonagem Molecular , DNA Fúngico/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Fosfofrutoquinase-1/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...